Commit 6e124736 authored by Swaroop Vattam's avatar Swaroop Vattam
Browse files

synced another 10 datasets

parent 5c146982
Pipeline #27 passed with stage
in 201 minutes and 2 seconds
......@@ -42734,3 +42734,81 @@ training_datasets/seed_datasets_archive/6_86_com_DBLP/SCORE/problem_TEST/dataSpl
training_datasets/seed_datasets_archive/6_86_com_DBLP/TEST/dataset_TEST/graphs/G1.gml filter=lfs diff=lfs merge=lfs -text
seed_datasets_current/66_chlorineConcentration_MIN_METADATA/66_chlorineConcentration_MIN_METADATA_dataset/tables/learningData.csv filter=lfs diff=lfs merge=lfs -text
training_datasets/seed_datasets_archive/66_chlorineConcentration/66_chlorineConcentration_dataset/tables/learningData.csv filter=lfs diff=lfs merge=lfs -text
seed_datasets_current/LL0_acled_reduced_MIN_METADATA/TRAIN/dataset_TRAIN/tables/learningData.csv filter=lfs diff=lfs merge=lfs -text
seed_datasets_current/LL0_acled_reduced_MIN_METADATA/TRAIN/problem_TRAIN/dataSplits.csv filter=lfs diff=lfs merge=lfs -text
seed_datasets_current/LL0_acled_reduced_MIN_METADATA/LL0_acled_reduced_MIN_METADATA_dataset/tables/learningData.csv filter=lfs diff=lfs merge=lfs -text
seed_datasets_current/LL0_acled_reduced_MIN_METADATA/LL0_acled_reduced_MIN_METADATA_problem/dataSplits.csv filter=lfs diff=lfs merge=lfs -text
seed_datasets_current/LL0_acled_reduced_MIN_METADATA/SCORE/dataset_SCORE/tables/learningData.csv filter=lfs diff=lfs merge=lfs -text
seed_datasets_current/LL0_acled_reduced_MIN_METADATA/TEST/dataset_TEST/tables/learningData.csv filter=lfs diff=lfs merge=lfs -text
seed_datasets_current/LL1_336_MS_Geolife_transport_mode_prediction_MIN_METADATA/TEST/dataset_TEST/tables/learningData.csv filter=lfs diff=lfs merge=lfs -text
seed_datasets_current/LL1_336_MS_Geolife_transport_mode_prediction_MIN_METADATA/TEST/problem_TEST/dataSplits.csv filter=lfs diff=lfs merge=lfs -text
seed_datasets_current/LL1_336_MS_Geolife_transport_mode_prediction_MIN_METADATA/TRAIN/dataset_TRAIN/tables/learningData.csv filter=lfs diff=lfs merge=lfs -text
seed_datasets_current/LL1_336_MS_Geolife_transport_mode_prediction_MIN_METADATA/TRAIN/problem_TRAIN/dataSplits.csv filter=lfs diff=lfs merge=lfs -text
seed_datasets_current/LL1_336_MS_Geolife_transport_mode_prediction_MIN_METADATA/LL1_336_MS_Geolife_transport_mode_prediction_MIN_METADATA_dataset/tables/learningData.csv filter=lfs diff=lfs merge=lfs -text
seed_datasets_current/LL1_336_MS_Geolife_transport_mode_prediction_MIN_METADATA/LL1_336_MS_Geolife_transport_mode_prediction_MIN_METADATA_problem/dataSplits.csv filter=lfs diff=lfs merge=lfs -text
seed_datasets_current/LL1_336_MS_Geolife_transport_mode_prediction_MIN_METADATA/SCORE/dataset_SCORE/tables/learningData.csv filter=lfs diff=lfs merge=lfs -text
seed_datasets_current/LL1_336_MS_Geolife_transport_mode_prediction_MIN_METADATA/SCORE/problem_SCORE/dataSplits.csv filter=lfs diff=lfs merge=lfs -text
seed_datasets_current/LL1_336_MS_Geolife_transport_mode_prediction_separate_lat_lon_MIN_METADATA/TRAIN/problem_TRAIN/dataSplits.csv filter=lfs diff=lfs merge=lfs -text
seed_datasets_current/LL1_336_MS_Geolife_transport_mode_prediction_separate_lat_lon_MIN_METADATA/LL1_336_MS_Geolife_transport_mode_prediction_separate_lat_lon_MIN_METADATA_dataset/tables/learningData.csv filter=lfs diff=lfs merge=lfs -text
seed_datasets_current/LL1_336_MS_Geolife_transport_mode_prediction_separate_lat_lon_MIN_METADATA/LL1_336_MS_Geolife_transport_mode_prediction_separate_lat_lon_MIN_METADATA_problem/dataSplits.csv filter=lfs diff=lfs merge=lfs -text
seed_datasets_current/LL1_336_MS_Geolife_transport_mode_prediction_separate_lat_lon_MIN_METADATA/SCORE/dataset_SCORE/tables/learningData.csv filter=lfs diff=lfs merge=lfs -text
seed_datasets_current/LL1_336_MS_Geolife_transport_mode_prediction_separate_lat_lon_MIN_METADATA/SCORE/problem_SCORE/dataSplits.csv filter=lfs diff=lfs merge=lfs -text
seed_datasets_current/LL1_336_MS_Geolife_transport_mode_prediction_separate_lat_lon_MIN_METADATA/TEST/dataset_TEST/tables/learningData.csv filter=lfs diff=lfs merge=lfs -text
seed_datasets_current/LL1_336_MS_Geolife_transport_mode_prediction_separate_lat_lon_MIN_METADATA/TEST/problem_TEST/dataSplits.csv filter=lfs diff=lfs merge=lfs -text
seed_datasets_current/LL1_336_MS_Geolife_transport_mode_prediction_separate_lat_lon_MIN_METADATA/TRAIN/dataset_TRAIN/tables/learningData.csv filter=lfs diff=lfs merge=lfs -text
seed_datasets_current/kaggle_music_hackathon_MIN_METADATA/TEST/dataset_TEST/tables/words.csv filter=lfs diff=lfs merge=lfs -text
seed_datasets_current/kaggle_music_hackathon_MIN_METADATA/TRAIN/dataset_TRAIN/tables/learningData.csv filter=lfs diff=lfs merge=lfs -text
seed_datasets_current/kaggle_music_hackathon_MIN_METADATA/kaggle_music_hackathon_MIN_METADATA_problem/dataSplits.csv filter=lfs diff=lfs merge=lfs -text
seed_datasets_current/kaggle_music_hackathon_MIN_METADATA/SCORE/dataset_SCORE/tables/words.csv filter=lfs diff=lfs merge=lfs -text
seed_datasets_current/kaggle_music_hackathon_MIN_METADATA/SCORE/dataset_SCORE/tables/learningData.csv filter=lfs diff=lfs merge=lfs -text
seed_datasets_current/kaggle_music_hackathon_MIN_METADATA/SCORE/problem_SCORE/dataSplits.csv filter=lfs diff=lfs merge=lfs -text
seed_datasets_current/kaggle_music_hackathon_MIN_METADATA/TEST/dataset_TEST/tables/users.csv filter=lfs diff=lfs merge=lfs -text
seed_datasets_current/kaggle_music_hackathon_MIN_METADATA/TRAIN/dataset_TRAIN/tables/words.csv filter=lfs diff=lfs merge=lfs -text
seed_datasets_current/kaggle_music_hackathon_MIN_METADATA/TRAIN/problem_TRAIN/dataSplits.csv filter=lfs diff=lfs merge=lfs -text
seed_datasets_current/kaggle_music_hackathon_MIN_METADATA/kaggle_music_hackathon_MIN_METADATA_dataset/tables/users.csv filter=lfs diff=lfs merge=lfs -text
seed_datasets_current/kaggle_music_hackathon_MIN_METADATA/kaggle_music_hackathon_MIN_METADATA_dataset/tables/words.csv filter=lfs diff=lfs merge=lfs -text
seed_datasets_current/kaggle_music_hackathon_MIN_METADATA/TRAIN/dataset_TRAIN/tables/users.csv filter=lfs diff=lfs merge=lfs -text
seed_datasets_current/kaggle_music_hackathon_MIN_METADATA/TEST/dataset_TEST/tables/learningData.csv filter=lfs diff=lfs merge=lfs -text
seed_datasets_current/kaggle_music_hackathon_MIN_METADATA/TEST/problem_TEST/dataSplits.csv filter=lfs diff=lfs merge=lfs -text
seed_datasets_current/kaggle_music_hackathon_MIN_METADATA/kaggle_music_hackathon_MIN_METADATA_dataset/tables/learningData.csv filter=lfs diff=lfs merge=lfs -text
seed_datasets_current/kaggle_music_hackathon_MIN_METADATA/SCORE/dataset_SCORE/tables/users.csv filter=lfs diff=lfs merge=lfs -text
training_datasets/seed_datasets_archive/LL0_acled_reduced/SCORE/targets.csv filter=lfs diff=lfs merge=lfs -text
training_datasets/seed_datasets_archive/LL0_acled_reduced/TEST/dataset_TEST/tables/learningData.csv filter=lfs diff=lfs merge=lfs -text
training_datasets/seed_datasets_archive/LL0_acled_reduced/TRAIN/dataset_TRAIN/tables/learningData.csv filter=lfs diff=lfs merge=lfs -text
training_datasets/seed_datasets_archive/LL0_acled_reduced/TRAIN/problem_TRAIN/dataSplits.csv filter=lfs diff=lfs merge=lfs -text
training_datasets/seed_datasets_archive/LL0_acled_reduced/LL0_acled_reduced_dataset/tables/learningData.csv filter=lfs diff=lfs merge=lfs -text
training_datasets/seed_datasets_archive/LL0_acled_reduced/LL0_acled_reduced_problem/dataSplits.csv filter=lfs diff=lfs merge=lfs -text
training_datasets/seed_datasets_archive/LL0_acled_reduced/SCORE/dataset_TEST/tables/learningData.csv filter=lfs diff=lfs merge=lfs -text
training_datasets/seed_datasets_archive/LL1_336_MS_Geolife_transport_mode_prediction/TEST/problem_TEST/dataSplits.csv filter=lfs diff=lfs merge=lfs -text
training_datasets/seed_datasets_archive/LL1_336_MS_Geolife_transport_mode_prediction/TRAIN/dataset_TRAIN/tables/learningData.csv filter=lfs diff=lfs merge=lfs -text
training_datasets/seed_datasets_archive/LL1_336_MS_Geolife_transport_mode_prediction/TRAIN/problem_TRAIN/dataSplits.csv filter=lfs diff=lfs merge=lfs -text
training_datasets/seed_datasets_archive/LL1_336_MS_Geolife_transport_mode_prediction/LL1_336_MS_Geolife_transport_mode_prediction_dataset/tables/learningData.csv filter=lfs diff=lfs merge=lfs -text
training_datasets/seed_datasets_archive/LL1_336_MS_Geolife_transport_mode_prediction/LL1_336_MS_Geolife_transport_mode_prediction_problem/dataSplits.csv filter=lfs diff=lfs merge=lfs -text
training_datasets/seed_datasets_archive/LL1_336_MS_Geolife_transport_mode_prediction/SCORE/dataset_SCORE/tables/learningData.csv filter=lfs diff=lfs merge=lfs -text
training_datasets/seed_datasets_archive/LL1_336_MS_Geolife_transport_mode_prediction/SCORE/problem_SCORE/dataSplits.csv filter=lfs diff=lfs merge=lfs -text
training_datasets/seed_datasets_archive/LL1_336_MS_Geolife_transport_mode_prediction/TEST/dataset_TEST/tables/learningData.csv filter=lfs diff=lfs merge=lfs -text
training_datasets/seed_datasets_archive/LL1_336_MS_Geolife_transport_mode_prediction_separate_lat_lon/TEST/problem_TEST/dataSplits.csv filter=lfs diff=lfs merge=lfs -text
training_datasets/seed_datasets_archive/LL1_336_MS_Geolife_transport_mode_prediction_separate_lat_lon/TRAIN/dataset_TRAIN/tables/learningData.csv filter=lfs diff=lfs merge=lfs -text
training_datasets/seed_datasets_archive/LL1_336_MS_Geolife_transport_mode_prediction_separate_lat_lon/TRAIN/problem_TRAIN/dataSplits.csv filter=lfs diff=lfs merge=lfs -text
training_datasets/seed_datasets_archive/LL1_336_MS_Geolife_transport_mode_prediction_separate_lat_lon/LL1_336_MS_Geolife_transport_mode_prediction_separate_lat_lon_dataset/tables/learningData.csv filter=lfs diff=lfs merge=lfs -text
training_datasets/seed_datasets_archive/LL1_336_MS_Geolife_transport_mode_prediction_separate_lat_lon/LL1_336_MS_Geolife_transport_mode_prediction_separate_lat_lon_problem/dataSplits.csv filter=lfs diff=lfs merge=lfs -text
training_datasets/seed_datasets_archive/LL1_336_MS_Geolife_transport_mode_prediction_separate_lat_lon/SCORE/dataset_SCORE/tables/learningData.csv filter=lfs diff=lfs merge=lfs -text
training_datasets/seed_datasets_archive/LL1_336_MS_Geolife_transport_mode_prediction_separate_lat_lon/SCORE/problem_SCORE/dataSplits.csv filter=lfs diff=lfs merge=lfs -text
training_datasets/seed_datasets_archive/LL1_336_MS_Geolife_transport_mode_prediction_separate_lat_lon/TEST/dataset_TEST/tables/learningData.csv filter=lfs diff=lfs merge=lfs -text
training_datasets/seed_datasets_archive/kaggle_music_hackathon/kaggle_music_hackathon_problem/dataSplits.csv filter=lfs diff=lfs merge=lfs -text
training_datasets/seed_datasets_archive/kaggle_music_hackathon/TRAIN/dataset_TRAIN/tables/users.csv filter=lfs diff=lfs merge=lfs -text
training_datasets/seed_datasets_archive/kaggle_music_hackathon/kaggle_music_hackathon_dataset/tables/learningData.csv filter=lfs diff=lfs merge=lfs -text
training_datasets/seed_datasets_archive/kaggle_music_hackathon/kaggle_music_hackathon_dataset/tables/words.csv filter=lfs diff=lfs merge=lfs -text
training_datasets/seed_datasets_archive/kaggle_music_hackathon/SCORE/dataset_TEST/tables/users.csv filter=lfs diff=lfs merge=lfs -text
training_datasets/seed_datasets_archive/kaggle_music_hackathon/TRAIN/dataset_TRAIN/tables/words.csv filter=lfs diff=lfs merge=lfs -text
training_datasets/seed_datasets_archive/kaggle_music_hackathon/TRAIN/problem_TRAIN/dataSplits.csv filter=lfs diff=lfs merge=lfs -text
training_datasets/seed_datasets_archive/kaggle_music_hackathon/kaggle_music_hackathon_dataset/tables/users.csv filter=lfs diff=lfs merge=lfs -text
training_datasets/seed_datasets_archive/kaggle_music_hackathon/TEST/dataset_TEST/tables/learningData.csv filter=lfs diff=lfs merge=lfs -text
training_datasets/seed_datasets_archive/kaggle_music_hackathon/TEST/dataset_TEST/tables/users.csv filter=lfs diff=lfs merge=lfs -text
training_datasets/seed_datasets_archive/kaggle_music_hackathon/TEST/dataset_TEST/tables/words.csv filter=lfs diff=lfs merge=lfs -text
training_datasets/seed_datasets_archive/kaggle_music_hackathon/TRAIN/dataset_TRAIN/tables/learningData.csv filter=lfs diff=lfs merge=lfs -text
training_datasets/seed_datasets_archive/kaggle_music_hackathon/SCORE/dataset_TEST/tables/learningData.csv filter=lfs diff=lfs merge=lfs -text
training_datasets/seed_datasets_archive/kaggle_music_hackathon/SCORE/dataset_TEST/tables/words.csv filter=lfs diff=lfs merge=lfs -text
training_datasets/seed_datasets_archive/kaggle_music_hackathon/SCORE/problem_TEST/dataSplits.csv filter=lfs diff=lfs merge=lfs -text
training_datasets/seed_datasets_archive/kaggle_music_hackathon/SCORE/targets.csv filter=lfs diff=lfs merge=lfs -text
training_datasets/seed_datasets_archive/kaggle_music_hackathon/TEST/problem_TEST/dataSplits.csv filter=lfs diff=lfs merge=lfs -text
{
"about": {
"datasetID": "LL0_acled_reduced_MIN_METADATA_dataset",
"datasetName": "acled",
"description": "This is a dataset consisting of reported political violence and protest events in the Middle East from 01/01/18-04/30/18. The events are grouped into one of nine categories. The event categories include: 1. Battle-No change of territory, 2. Battle-Non-state actor overtakes territory, 3. Battle-Government regains territory, 4. Headquarters or base established, 5. Strategic development, 6. Riots/Protests, 7. Violence against civilians, 8. Non-violent transfer of territory, and 9. Remote violence.",
"citation": " @article{raleigh2010introducing,title={Introducing ACLED: an armed conflict location and event dataset: special data feature},author={Raleigh, Clionadh and Linke, Andrew and Hegre, Havard and Karlsen, Joakim},journal={Journal of peace research}} ",
"license": " Non commercial ",
"source": "Armed Conflict Location & Event Data Project (ACLED)",
"sourceURI": "https://www.acleddata.com/",
"redacted": false,
"datasetSchemaVersion": "4.0.0",
"datasetVersion": "4.0.0",
"digest": "ee99cf61f9235985ee881f803fa89465dbd06cb8ea2411a23da83ed3f2494e01"
},
"dataResources": [
{
"resID": "learningData",
"resPath": "tables/learningData.csv",
"resType": "table",
"resFormat": {
"text/csv": [
"csv"
]
},
"columns": [
{
"colIndex": 0,
"colName": "d3mIndex",
"colType": "integer",
"role": [
"index"
]
}
]
}
]
}
\ No newline at end of file
This source diff could not be displayed because it is stored in LFS. You can view the blob instead.
This source diff could not be displayed because it is stored in LFS. You can view the blob instead.
{
"about": {
"problemID": "LL0_acled_reduced_MIN_METADATA_problem",
"problemName": "acled",
"problemDescription": "This is a multi-class classification problem. Given a protest/political violence event, predict whether it was one of nine classes.",
"problemSchemaVersion": "4.0.0",
"problemVersion": "4.0.0",
"taskKeywords": [
"classification",
"multiClass",
"geospatial",
"tabular"
]
},
"inputs": {
"data": [
{
"datasetID": "LL0_acled_reduced_MIN_METADATA_dataset",
"targets": [
{
"targetIndex": 0,
"resID": "learningData",
"colIndex": 6,
"colName": "event_type"
}
]
}
],
"dataSplits": {
"method": "holdOut",
"testSize": 0.4746,
"stratified": false,
"numRepeats": 0,
"splitsFile": "dataSplits.csv",
"datasetViewMaps": {
"train": [
{
"from": "LL0_acled_reduced_MIN_METADATA_dataset",
"to": "LL0_acled_reduced_MIN_METADATA_dataset_TRAIN"
}
],
"test": [
{
"from": "LL0_acled_reduced_MIN_METADATA_dataset",
"to": "LL0_acled_reduced_MIN_METADATA_dataset_TEST"
}
],
"score": [
{
"from": "LL0_acled_reduced_MIN_METADATA_dataset",
"to": "LL0_acled_reduced_MIN_METADATA_dataset_SCORE"
}
]
}
},
"performanceMetrics": [
{
"metric": "accuracy"
}
]
},
"expectedOutputs": {
"predictionsFile": "predictions.csv"
}
}
\ No newline at end of file
{
"about": {
"datasetID": "LL0_acled_reduced_MIN_METADATA_dataset_SCORE",
"datasetName": "acled",
"description": "This is a dataset consisting of reported political violence and protest events in the Middle East from 01/01/18-04/30/18. The events are grouped into one of nine categories. The event categories include: 1. Battle-No change of territory, 2. Battle-Non-state actor overtakes territory, 3. Battle-Government regains territory, 4. Headquarters or base established, 5. Strategic development, 6. Riots/Protests, 7. Violence against civilians, 8. Non-violent transfer of territory, and 9. Remote violence.",
"citation": "@article{raleigh2010introducing,title={Introducing ACLED: an armed conflict location and event dataset: special data feature},author={Raleigh, Clionadh and Linke, Andrew and Hegre, H{\u0007a}vard and Karlsen, Joakim},journal={Journal of peace research},volume={47},number={5},pages={651--660},year={2010},publisher={Sage Publications Sage UK: London, England}}",
"license": "open",
"source": "Armed Conflict Location & Event Data Project (ACLED)",
"sourceURI": "https://www.acleddata.com/",
"redacted": false,
"datasetSchemaVersion": "4.0.0",
"datasetVersion": "4.0.0",
"digest": "1719650530134c48750518bf50813b6795e16f4e6e912156cebc1419f7c9a908"
},
"dataResources": [
{
"resID": "learningData",
"resPath": "tables/learningData.csv",
"resType": "table",
"resFormat": {
"text/csv": [
"csv"
]
},
"columns": [
{
"colIndex": 0,
"colName": "d3mIndex",
"colType": "integer",
"role": [
"index"
]
}
]
}
]
}
\ No newline at end of file
This source diff could not be displayed because it is stored in LFS. You can view the blob instead.
{
"about": {
"problemID": "LL0_acled_reduced_MIN_METADATA_problem",
"problemName": "acled",
"problemDescription": "This is a multi-class classification problem. Given a protest/political violence event, predict whether it was one of nine classes.",
"problemSchemaVersion": "4.0.0",
"problemVersion": "4.0.0",
"taskKeywords": [
"classification",
"multiClass",
"geospatial",
"tabular"
]
},
"inputs": {
"data": [
{
"datasetID": "LL0_acled_reduced_MIN_METADATA_dataset",
"targets": [
{
"targetIndex": 0,
"resID": "learningData",
"colIndex": 6,
"colName": "event_type"
}
]
}
],
"dataSplits": {
"method": "holdOut",
"testSize": 0.4746,
"stratified": false,
"numRepeats": 0,
"splitsFile": "dataSplits.csv",
"datasetViewMaps": {
"train": [
{
"from": "LL0_acled_reduced_MIN_METADATA_dataset",
"to": "LL0_acled_reduced_MIN_METADATA_dataset_TRAIN"
}
],
"test": [
{
"from": "LL0_acled_reduced_MIN_METADATA_dataset",
"to": "LL0_acled_reduced_MIN_METADATA_dataset_TEST"
}
],
"score": [
{
"from": "LL0_acled_reduced_MIN_METADATA_dataset",
"to": "LL0_acled_reduced_MIN_METADATA_dataset_SCORE"
}
]
}
},
"performanceMetrics": [
{
"metric": "accuracy"
}
]
},
"expectedOutputs": {
"predictionsFile": "predictions.csv"
}
}
\ No newline at end of file
{
"about": {
"datasetID": "LL0_acled_reduced_MIN_METADATA_dataset_TEST",
"datasetName": "acled",
"description": "This is a dataset consisting of reported political violence and protest events in the Middle East from 01/01/18-04/30/18. The events are grouped into one of nine categories. The event categories include: 1. Battle-No change of territory, 2. Battle-Non-state actor overtakes territory, 3. Battle-Government regains territory, 4. Headquarters or base established, 5. Strategic development, 6. Riots/Protests, 7. Violence against civilians, 8. Non-violent transfer of territory, and 9. Remote violence.",
"citation": "@article{raleigh2010introducing,title={Introducing ACLED: an armed conflict location and event dataset: special data feature},author={Raleigh, Clionadh and Linke, Andrew and Hegre, H{\u0007a}vard and Karlsen, Joakim},journal={Journal of peace research},volume={47},number={5},pages={651--660},year={2010},publisher={Sage Publications Sage UK: London, England}}",
"license": "open",
"source": "Armed Conflict Location & Event Data Project (ACLED)",
"sourceURI": "https://www.acleddata.com/",
"redacted": false,
"datasetSchemaVersion": "4.0.0",
"datasetVersion": "4.0.0",
"digest": "8bd4ff8ead546fbf4409e1a735b776e927e4edeec0b03bd6d3146e06821afc62"
},
"dataResources": [
{
"resID": "learningData",
"resPath": "tables/learningData.csv",
"resType": "table",
"resFormat": {
"text/csv": [
"csv"
]
},
"columns": [
{
"colIndex": 0,
"colName": "d3mIndex",
"colType": "integer",
"role": [
"index"
]
}
]
}
]
}
\ No newline at end of file
This source diff could not be displayed because it is stored in LFS. You can view the blob instead.
{
"about": {
"problemID": "LL0_acled_reduced_MIN_METADATA_problem",
"problemName": "acled",
"problemDescription": "This is a multi-class classification problem. Given a protest/political violence event, predict whether it was one of nine classes.",
"problemSchemaVersion": "4.0.0",
"problemVersion": "4.0.0",
"taskKeywords": [
"classification",
"multiClass",
"geospatial",
"tabular"
]
},
"inputs": {
"data": [
{
"datasetID": "LL0_acled_reduced_MIN_METADATA_dataset",
"targets": [
{
"targetIndex": 0,
"resID": "learningData",
"colIndex": 6,
"colName": "event_type"
}
]
}
],
"dataSplits": {
"method": "holdOut",
"testSize": 0.4746,
"stratified": false,
"numRepeats": 0,
"splitsFile": "dataSplits.csv",
"datasetViewMaps": {
"train": [
{
"from": "LL0_acled_reduced_MIN_METADATA_dataset",
"to": "LL0_acled_reduced_MIN_METADATA_dataset_TRAIN"
}
],
"test": [
{
"from": "LL0_acled_reduced_MIN_METADATA_dataset",
"to": "LL0_acled_reduced_MIN_METADATA_dataset_TEST"
}
],
"score": [
{
"from": "LL0_acled_reduced_MIN_METADATA_dataset",
"to": "LL0_acled_reduced_MIN_METADATA_dataset_SCORE"
}
]
}
},
"performanceMetrics": [
{
"metric": "accuracy"
}
]
},
"expectedOutputs": {
"predictionsFile": "predictions.csv"
}
}
\ No newline at end of file
{
"about": {
"datasetID": "LL0_acled_reduced_MIN_METADATA_dataset_TRAIN",
"datasetName": "acled",
"description": "This is a dataset consisting of reported political violence and protest events in the Middle East from 01/01/18-04/30/18. The events are grouped into one of nine categories. The event categories include: 1. Battle-No change of territory, 2. Battle-Non-state actor overtakes territory, 3. Battle-Government regains territory, 4. Headquarters or base established, 5. Strategic development, 6. Riots/Protests, 7. Violence against civilians, 8. Non-violent transfer of territory, and 9. Remote violence.",
"citation": "@article{raleigh2010introducing,title={Introducing ACLED: an armed conflict location and event dataset: special data feature},author={Raleigh, Clionadh and Linke, Andrew and Hegre, H{\u0007a}vard and Karlsen, Joakim},journal={Journal of peace research},volume={47},number={5},pages={651--660},year={2010},publisher={Sage Publications Sage UK: London, England}}",
"license": "open",
"source": "Armed Conflict Location & Event Data Project (ACLED)",
"sourceURI": "https://www.acleddata.com/",
"redacted": false,
"datasetSchemaVersion": "4.0.0",
"datasetVersion": "4.0.0",
"digest": "116f9b59ca591e0b31140bde49bad3dc1d79fe6b48dfd0da8b9ba0aa0f1e4984"
},
"dataResources": [
{
"resID": "learningData",
"resPath": "tables/learningData.csv",
"resType": "table",
"resFormat": {
"text/csv": [
"csv"
]
},
"columns": [
{
"colIndex": 0,
"colName": "d3mIndex",
"colType": "integer",
"role": [
"index"
]
}
]
}
]
}
\ No newline at end of file
This source diff could not be displayed because it is stored in LFS. You can view the blob instead.
This source diff could not be displayed because it is stored in LFS. You can view the blob instead.
{
"about": {
"problemID": "LL0_acled_reduced_MIN_METADATA_problem",
"problemName": "acled",
"problemDescription": "This is a multi-class classification problem. Given a protest/political violence event, predict whether it was one of nine classes.",
"problemSchemaVersion": "4.0.0",
"problemVersion": "4.0.0",
"taskKeywords": [
"classification",
"multiClass",
"geospatial",
"tabular"
]
},
"inputs": {
"data": [
{
"datasetID": "LL0_acled_reduced_MIN_METADATA_dataset",
"targets": [
{
"targetIndex": 0,
"resID": "learningData",
"colIndex": 6,
"colName": "event_type"
}
]
}
],
"dataSplits": {
"method": "holdOut",
"testSize": 0.4746,
"stratified": false,
"numRepeats": 0,
"splitsFile": "dataSplits.csv",
"datasetViewMaps": {
"train": [
{
"from": "LL0_acled_reduced_MIN_METADATA_dataset",
"to": "LL0_acled_reduced_MIN_METADATA_dataset_TRAIN"
}
],
"test": [
{
"from": "LL0_acled_reduced_MIN_METADATA_dataset",
"to": "LL0_acled_reduced_MIN_METADATA_dataset_TEST"
}
],
"score": [
{
"from": "LL0_acled_reduced_MIN_METADATA_dataset",
"to": "LL0_acled_reduced_MIN_METADATA_dataset_SCORE"
}
]
}
},
"performanceMetrics": [
{
"metric": "accuracy"
}
]
},
"expectedOutputs": {
"predictionsFile": "predictions.csv"
}
}
\ No newline at end of file
-----------------NOTICE------------------
This dataset was collected for use within the DARPA Data Driven Discovery of Models (D3M) program.
ID: LL0_acled_reduced
Name: LL0_acled_reduced_dataset
Description: This is a dataset consisting of reported political violence and protest events in the Middle East from 01/01/18-04/30/18. The events are grouped into one of nine categories. The event categories include: 1. Battle-No change of territory, 2. Battle-Non-state actor overtakes territory, 3. Battle-Government regains territory, 4. Headquarters or base established, 5. Strategic development, 6. Riots/Protests, 7. Violence against civilians, 8. Non-violent transfer of territory, and 9. Remote violence.
License: Non commercial
License Link: https://www.acleddata.com/wp-content/uploads/dlm_uploads/2018/12/TermsofUseAttributionPolicy_4.2019.pdf
Source: Armed Conflict Location & Event Data Project (ACLED)
Source Link: https://www.acleddata.com/
Citation: @article{raleigh2010introducing,title={Introducing ACLED: an armed conflict location and event dataset: special data feature},author={Raleigh, Clionadh and Linke, Andrew and Hegre, H{a}vard and Karlsen, Joakim},journal={Journal of peace research}}
-----------------END------------------
\ No newline at end of file
{
"about": {
"datasetID": "LL1_336_MS_Geolife_transport_mode_prediction_MIN_METADATA_dataset",
"datasetName": "MS Geolife transportation mode data",
"description": "This GPS trajectory dataset was collected in (Microsoft Research Asia) Geolife project by 182 users in a period of over three years (from April 2007 to August 2012). A GPS trajectory of this dataset is represented by a sequence of time-stamped points, each of which contains the information of latitude, longitude and altitude. This dataset contains a users' trajectories labeled with transportation mode.",
"citation": " @article{OpenML2013, author = {Yu Zheng, Lizhu Zhang, Xing Xie, Wei-Ying Ma}, title = {Mining interesting locations and travel sequences from GPS trajectories}, journal = {In Proceedings of International conference on World Wild Web}, pages = {791-800}, publisher = {ACM}, address = {New York, NY, USA}, }@article{OpenML2013, author = {Yu Zheng, Quannan Li, Yukun Chen, Xing Xie, Wei-Ying Ma}, title = {Understanding Mobility Based on GPS Data}, journal = {In Proceedings of ACM conference on Ubiquitous Computing (UbiComp 2008)}, publisher = {ACM}, address = {Seoul, Korea}, } ",
"license": " MSR-LA ",
"datasetSchemaVersion": "4.0.0",
"redacted": false,
"digest": "e938c8b67c10f2fb1643d5cbda672dc8cf700d746bc3d97e7708d98f12803af1",
"datasetVersion": "4.0.0"
},
"dataResources": [
{
"resID": "learningData",
"resPath": "tables/learningData.csv",
"resType": "table",
"resFormat": {
"text/csv": [
"csv"
]
},
"columns": [
{
"colIndex": 0,